# LampMark: Proactive Deepfake Detection via Training-Free Landmark Perceptual Watermarks

Tianyi Wang<sup>1</sup>, Mengxiao Huang<sup>2</sup>, Harry Cheng<sup>3</sup>, Xiao Zhang<sup>2</sup>, Zhiqi Shen<sup>1</sup>

<sup>1</sup>College of Computing and Data Science, Nanyang Technological University <sup>2</sup>Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Qilu University of Technology <sup>3</sup>School of Computer Science and Technology, Shandong University

## Motivation

- $\succ$  Performance bottlenecks in passive Deepfake detection.
- $\succ$  Unsatisfactory generalizability of existing proactive approaches.
- > Structure-sensitive characteristic of Deepfake manipulations: obvious position differences  $\rho$  for facial landmarks.
- > Benign Deepfake usages shall be allowed.



## Landmark Perceptual Watermark

- > **Discrimination**: no two different facial landmarks corresponds to a same watermark.
  - Facial landmark extraction via Face++.
  - $\succ$  Principle component analysis (PCA) for dimension regulation.
  - $\succ$  Normalization to get binary watermarks.
- > Confidentiality: watermark encryption to avoid malicious attacks.
  - $\succ$  Cellular automaton encryption system.
  - $\succ$  For an encryption key  $k_t$ , the state of each bit *i* at the next time step t + 1 is determined by the rule  $s_i^{t+1} = R(s_{i-1}^t, s_i^t, s_{i+1}^t)$ .



## Main Workflow

- $\succ$  Design the training-free landmark perceptual watermark.
  - $\succ$  Discrimination.
  - $\succ$  Confidentiality.
  - Robustness.
- $\succ$  Construct an auto-encoder for watermark embedding and recovery.
- Perform Deepfake detection based on the consistency between the recovered watermark and the suspect image.



- $\succ s_{i}^{t+1} = \begin{cases} s_{l-1}^{t} \oplus (s_{0}^{t} \lor s_{1}^{t}), \\ s_{i-1}^{t} \oplus (s_{i}^{t} \lor s_{i+1}^{t}), & \text{for} \\ s_{l-2}^{t} \oplus (s_{l}^{t} \lor s_{0}^{t}), \end{cases} \text{ for } \begin{cases} i = 0, \\ 0 < i < l-1, \\ i = l-1. \end{cases}$
- $\succ$  Watermark encryption via XOR operation using selected keys.
- > Robustness: watermark stays robust against both benign and Deepfake manipulations.
  - Benign image manipulation pool: Gaussian Noise, Gaussian Blur, Median Blur, Jpeg.
  - $\succ$  Malicious Deepfake manipulation pool: SimSwap, InfoSwap, UniFace, E4S, StarGAN, StyleMask, HyperReenact.
  - $\succ$  Model sees only Jpeg and SimSwap during training.

# Watermark Embedding and Recovery

- > An end-to-end auto-encoder framework.
  - $\succ$  Encoder for watermark embedding.
  - Decoder for watermark recovery.
  - > Discriminator for watermarking visual quality improvements.
- > Objectives

> Encoder: 
$$L_I = ||I_{rec} - I||_2$$
.

> Decoder: 
$$L_m = ||m_{rec} - m|$$

> Discriminator:  $L_{adv} = -\mathbb{E}(\log(D(I))) + \mathbb{E}(\log(1 - D(I_{rec}))).$ 

> Auxiliary generative loss:  $L_G = \|G(I, I_s) - G(I_{rec}, I_s)\|_2$ .

## **Experimental Results**

 $\succ$  Watermarking visual quality evaluation.



StyleMask HyperReenact E4S StarGAN MedianBlu UniFace Jpeg SimSwap  $\mu = 0, \, \sigma = 0.1 \qquad \sigma = 2, \, k = 3$ k = 3Q = 50

#### $\succ$ Watermark robustness evaluation via bit-wise recovery accuracy.

|                | SimSwap [6]    | InfoSwap [9] | UniFace [47] | E4S [23]      | StarGAN [7] | StyleMask [3] | HyperReenact [2] | Average |
|----------------|----------------|--------------|--------------|---------------|-------------|---------------|------------------|---------|
| HiDDeN [56]    | 50.02%         | 50.07%       | 54.98%       | 49.19%        | 50.24%      | 49.99%        | 50.15%           | 50.66%  |
| MBRS [17]      | 49.98%         | 50.82%       | 50.22%       | 50.07%        | 49.95%      | 50.08%        | 50.08%           | 50.17%  |
| RDA [51]       | 50.00%         | 50.01%       | 71.15%       | 63.03%        | 47.45%      | 48.94%        | 56.65%           | 55.32%  |
| CIN [25]       | 50.28%         | 50.60%       | 46.01%       | 50.55%        | 50.05%      | 50.24%        | 50.43%           | 49.74%  |
| ARWGAN [15]    | 52.06%         | 47.94%       | 59.30%       | 49.81%        | 50.51%      | 50.10%        | 49.86%           | 51.37%  |
| SepMark [46]   | 86.17%         | 77.27%       | 66.13%       | 81.62%        | 49.05%      | 50.16%        | 50.05%           | 65.78%  |
| Ours           | <b>99.95</b> % | 97.99%       | 99.72%       | <b>92.09%</b> | 73.12%      | 74.19%        | 73.53%           | 87.23%  |
| MBRS [17]      | 50.00%         | 50.71%       | 49.98%       | 50.07%        | 49.95%      | 50.00%        | 50.07%           | 50.11%  |
| FaceSigns [26] | 49.74%         | 50.00%       | 50.59%       | 49.73%        | 50.51%      | 49.10%        | 49.28%           | 49.85%  |
| SepMark [46]   | 92.09%         | 81.49%       | 57.44%       | 77.32%        | 50.11%      | 50.06%        | 50.02%           | 65.50%  |
| Ours           | 99.98%         | 98.31%       | 94.28%       | 93.27%        | 74.66%      | 75.83%        | 74.18%           | 87.21%  |

#### **Deepfake Detection**

- $\succ$  Given watermarked image  $I_{\rm rec}$  embedded with watermark m.
- $\succ$  Common and Deepfake manipulations on  $I_{rec}$ , derives  $I_{benign}$  and  $I_{fake}$ .
- $\succ$  Generate landmark perceptual watermarks regarding  $I_{\text{benign}}$  and  $I_{\text{fake}}$ , deriving  $m_{\rm benign}$  and  $m_{\rm fake}$ .
- > The robust watermark  $m_{\rm rec}$  can be recovered from  $I_{\rm benign}$  and  $I_{\rm fake}$ , faithfully similar to m.

#### Summary

- $\succ$  We analyzed the structure sensitivity of images derived by Deepfake manipulations.
- > We proposed a training-free landmark perceptual watermark that maintains the original uniqueness of facial landmarks.
- $\succ$  We devised a sophisticated cellular automaton encryption system to securely protect the watermarks.
- > We constructed an auto-encoder to robustly embed and

 $\succ$  Comparing  $m_{\rm rec}$  and  $m_{\rm benign}$  leads to high similarity, indicating real.  $\succ$  Comparing  $m_{\rm rec}$  and  $m_{\rm fake}$  leads to low similarity, indicating fake.

|                  | Xception [48] |        | SBIs [32] |        | RECCE [4] |        | CADDM [8] |        | Ours           |                |
|------------------|---------------|--------|-----------|--------|-----------|--------|-----------|--------|----------------|----------------|
| Resolution       | 128           | 256    | 128       | 256    | 128       | 256    | 128       | 256    | 128            | 256            |
| SimSwap [6]      | 39.37%        | 71.15% | 75.30%    | 88.94% | 60.37%    | 69.01% | 55.91%    | 87.66% | <b>97.80</b> % | 99.01%         |
| InfoSwap [9]     | 60.82%        | 65.50% | 85.11%    | 80.50% | 55.51%    | 52.13% | 48.29%    | 61.39% | <b>98.59</b> % | <b>99.18</b> % |
| UniFace [47]     | 71.79%        | 70.34% | 72.45%    | 79.41% | 61.58%    | 67.35% | 82.16%    | 82.73% | 96.76%         | <b>97.03</b> % |
| E4S [23]         | 43.40%        | 53.70% | 63.63%    | 61.05% | 60.88%    | 47.19% | 64.93%    | 73.13% | <b>98.99</b> % | <b>99.10</b> % |
| StarGAN [7]      | 37.14%        | 40.30% | 48.98%    | 65.86% | 35.82%    | 41.55% | 37.41%    | 44.34% | <b>98.96</b> % | 99.32%         |
| StyleMask [3]    | 29.41%        | 40.23% | 38.45%    | 48.45% | 31.08%    | 23.87% | 34.87%    | 39.73% | 98.62%         | <b>98.98</b> % |
| HyperReenact [2] | 38.96%        | 76.27% | 52.36%    | 53.35% | 82.23%    | 78.23% | 35.87%    | 42.87% | <b>98.87</b> % | <b>99.02</b> % |
| Mixed            | 41.28%        | 41.42% | 60.39%    | 68.62% | 54.09%    | 52.51% | 52.04%    | 59.84% | 98.39%         | 98.55%         |

recover watermarks.

 $\succ$  Our method outperform the SOTAs across in-dataset, crossdataset, and cross-manipulation scenarios.

#### Insights

- > Assigning semantics to the robust watermarks completes the detection pipeline without requiring the ground-truth.
- > Watermark robustness is achieved for cross-manipulation since the generative goals of Deepfake models are the same.





Contact

Tianyi Wang (王天一) Web: https://www.tianyiwang.xyz Email: terry.ai.wang@gmail.com

