
Experimental Results
Ø Watermarking visual quality evaluation.
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Motivation
Ø Performance bottlenecks in passive Deepfake detection.
Ø Unsatisfactory generalizability of existing proactive approaches.
Ø Structure-sensitive characteristic of Deepfake manipulations: obvious position

differences J for facial landmarks.
Ø Benign Deepfake usages shall be allowed.
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Landmark Perceptual Watermark
Ø Discrimination: no two different facial landmarks corresponds to a

same watermark.
Ø Facial landmark extraction via Face++.
Ø Principle component analysis (PCA) for dimension regulation.
Ø Normalization to get binary watermarks.

Ø Confidentiality: watermark encryption to avoid malicious attacks.
Ø Cellular automaton encryption system.
Ø For an encryption key )(, the state of each bit * at the next time

step + + 1 is determined by the rule -)(*+ = /(-),+( , -)( , -)*+( ).

Ø -)(*+ =
--,+( ⨁ -.( ∨ -+( ,
-),+( ⨁ -)( ∨ -)*+( ,
--,/( ⨁ --( ∨ -.( ,

 for 4
* = 0,
0 < * < 6 − 1,
* = 6 − 1.

Ø Watermark encryption via XOR operation using selected keys.
Ø Robustness: watermark stays robust against both benign and

Deepfake manipulations.
Ø Benign image manipulation pool: Gaussian Noise, Gaussian Blur, 

Median Blur, Jpeg.
Ø Malicious Deepfake manipulation pool: SimSwap, InfoSwap,

UniFace, E4S, StarGAN, StyleMask, HyperReenact.
Ø Model sees only Jpeg and SimSwap during training.

Main Workflow
Ø Design the training-free landmark perceptual watermark.

Ø Discrimination.
Ø Confidentiality.
Ø Robustness.

Ø Construct an auto-encoder for watermark embedding and recovery.
Ø Perform Deepfake detection based on the consistency between the recovered

watermark and the suspect image.
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Watermark Embedding and Recovery
Ø An end-to-end auto-encoder framework.

Ø Encoder for watermark embedding.
Ø Decoder for watermark recovery.
Ø Discriminator for watermarking visual quality improvements.

Ø Objectives
Ø Encoder: B8 = C"29 − C /.
Ø Decoder: B: = >"29 −> /
Ø Discriminator: B#4; = −D log H C + D(log(1 − H(C"29))).
Ø Auxiliary generative loss: B< = I C, C= − I C"29, C= /.

Ø Watermark robustness evaluation via bit-wise recovery accuracy.

Deepfake Detection
Ø Given watermarked image C"29 embedded with watermark >.
Ø Common and Deepfake manipulations on C"29, derives C&2$'3$ and C6#72.
Ø Generate landmark perceptual watermarks regarding C&2$'3$ and C6#72 , deriving
>&2$'3$ and >6#72.

Ø The robust watermark >"29 can be recovered from C&2$'3$ and C6#72, faithfully similar
to >.

Ø Comparing >"29 and >&2$'3$ leads to high similarity, indicating real.
Ø Comparing >"29 and >6#72 leads to low similarity, indicating fake.

Summary
Ø We analyzed the structure sensitivity of images derived by

Deepfake manipulations.
Ø We proposed a training-free landmark perceptual watermark

that maintains the original uniqueness of facial landmarks.
Ø We devised a sophisticated cellular automaton encryption 

system to securely protect the watermarks.
Ø We constructed an auto-encoder to robustly embed and

recover watermarks.
Ø Our method outperform the SOTAs across in-dataset, cross-

dataset, and cross-manipulation scenarios.

Insights
Ø Assigning semantics to the robust watermarks completes the

detection pipeline without requiring the ground-truth.
Ø Watermark robustness is achieved for cross-manipulation

since the generative goals of Deepfake models are the same.
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